La función generatriz para B_k. Polinomios de Bernoulli

Alexey Beshenov (cadadr@gmail.com)

28 de Febrero de 2017

La función generatriz para B_k

Teorema. Los números de Bernoulli pueden ser definidos por

$$\frac{te^t}{e^t - 1} = \sum_{k \geq 0} B_k \frac{t^k}{k!}.$$

Aunque se puede pensar en esta identidad como en la serie de Taylor para $\frac{te^t}{e^t - 1}$ en un entorno de 0, para nosotros esto significa nada más que el cociente de series formales $\frac{te^t}{e^t - 1}$ en $\mathbb{Q}(t)$ es igual a la serie formal $\sum_{k \geq 0} B_k \frac{t^k}{k!}$.

Demostración. Tenemos que ver que la identidad

$$\left(\sum_{k \geq 0} B_k \frac{t^k}{k!}\right) (e^t - 1) = te^t.$$

define los números de Bernoulli. Calculemos el producto al lado izquierdo:

$$\left(\sum_{k \geq 0} B_k \frac{t^k}{k!}\right) (e^t - 1) = \left(\sum_{k \geq 0} B_k \frac{t^k}{k!}\right) \left(\sum_{i \geq 1} \frac{t^i}{i!}\right) = \sum_{k \geq 1} \left(\sum_{0 \leq i \leq k-1} \frac{B_i}{i!} \frac{1}{(k-i)!}\right) \frac{t^k}{k!} = \sum_{k \geq 1} \left(\sum_{0 \leq i \leq k-1} \frac{B_i}{i!} \frac{k!}{(k-i)!}\right) \frac{t^k}{k!} = \sum_{k \geq 1} \left(\sum_{0 \leq i \leq k-1} \binom{k}{i} B_i \right) \frac{t^k}{k!} = \sum_{k \geq 1} \frac{t^k}{(k-1)!} = te^t.$$

La última igualdad se cumple si y solamente si

$$\sum_{0 \leq i \leq k-1} \binom{k}{i} B_i = k.$$

Como hemos visto, esta identidad define los números de Bernoulli.
Ejemplo. Calculemos algunos términos de la serie formal \(\frac{t^e}{e-1} \). Tenemos

\[e^t - 1 = t + \frac{t^2}{2} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \cdots = t \left(1 + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \cdots \right). \]

Luego,

\[\frac{t}{e^t - 1} = \frac{1}{1 + \frac{t}{2!} + \frac{t^2}{3!} + \frac{t^3}{4!} + \frac{t^4}{5!} + \cdots} \]

Podemos calcular la última serie usando la fórmula

\[\frac{1}{1 + f(t)} = 1 - f(t) + f(t)^2 - f(t)^3 + f(t)^4 - \cdots \]

Tenemos

\[
1 - \left(\frac{t}{2!} + \frac{t^2}{3!} + \frac{t^3}{4!} + \frac{t^4}{5!} + \cdots \right) + \left(\frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \cdots \right)^2
- \left(\frac{t}{2!} + \frac{t^2}{3!} + \frac{t^3}{4!} + \frac{t^4}{5!} + \cdots \right)^3 + \left(\frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \frac{t^5}{5!} + \cdots \right)^4 - \cdots
= 1 - \left(\frac{t^2}{6} + \frac{t^3}{24} + \frac{t^4}{120} + \cdots \right) + \left(\frac{t^2}{4} + \frac{t^3}{6} + \frac{5t^4}{72} + \cdots \right) - \left(\frac{t^3}{8} + \frac{t^4}{8} + \cdots \right) + \left(\frac{t^4}{16} + \cdots \right) - \cdots
\]

Multiplicando las seres, se obtiene

\[\frac{t^e}{e^t - 1} = \left(1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots \right) \cdot \left(1 - \frac{t^2}{2} + \frac{t^3}{12} + 0 \cdot t^3 - \frac{t^4}{720} + \cdots \right) = 1 + \frac{t^2}{2} + \frac{t^4}{12} - \frac{t^4}{720} + \cdots \]

y entonces

\[B_0 = 1, \quad B_1 = \frac{1}{2}, \quad B_2 = 2!, \quad \frac{1}{12} = \frac{1}{6}, \quad B_3 = 0, \quad B_4 = -4!, \quad \frac{1}{720} = -\frac{1}{30}. \]

Por supuesto, el último ejemplo es un poco masoquista: todo esto se puede hacer en PARI/GP.

```pari
? ser = (t*exp(t))/(exp(t)-1)
\% = 1 + 1/2*t + 1/12*t^2 - 1/720*t^4 + 1/30240*t^6 - 1/1209600*t^8 + 1/47900160*t^10
- 691/130767436800*t^12 + 1/74724249600*t^14 + O(t^16)

? vector(11,k, polcoeff(ser,(k-1),t)*(k-1)!)\n\% = [1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
```

En muchos libros (y también en PARI/GP) se usa otra convención para los números de Bernoulli según la cual \(B_1 = -\frac{1}{2} \). En este caso la función generatriz es \(\frac{t^e}{e-1} - t = \frac{t^e}{e-1} \).
Ejemplo. La fórmula $\frac{te^t}{e^t-1} = \sum_{k \geq 0} \frac{B_k}{k!} t^k$ nos permite demostrar que $B_k = 0$ para $k \geq 3$ impar. En efecto, para ignorar el caso excepcional $B_1 = \frac{1}{2}$, examinemos la función

$$f(t) := \frac{te^t}{e^t-1} - \frac{t}{2} = B_0 + \frac{B_2}{2!} t^2 + \frac{B_3}{3!} t^3 + \frac{B_4}{4!} t^4 + \frac{B_5}{5!} t^5 + \cdots$$

Tenemos

$$f(t) = \frac{te^t}{e^t-1} - \frac{t}{2} = \frac{t(e^t-1+1)}{e^t-1} - \frac{t}{2} = \frac{t}{e^t-1} + \frac{t}{2}.$$

Luego,

$$f(-t) = \frac{(-t)e^{-t}}{e^{-t}-1} - \frac{(-t)}{2} = \frac{t}{e^{-t}-1} + \frac{t}{2}.$$

Entonces, $f(t) = f(-t)$, lo que implica que los coeficientes impares de $f(t)$ son nulos. ▲

Los números de Bernoulli también surgen en otras series. Por ejemplo, tenemos la siguiente

Proposición.

$$t \cot(t) = 1 + \sum_{k \geq 1} (-1)^k 2^{2k} \frac{B_{2k}}{(2k)!} t^{2k}.$$

Esto ya tiene que ser interpretado analíticamente. Las series con números de Bernoulli para varias funciones como $\tan(t)$, $\cot(t)$, $\tanh(t)$, $\coth(t)$ fueron descubiertas por Euler.

Demostración. Se tiene

$$\cos(t) = \frac{e^{it} + e^{-it}}{2}, \quad \sen(t) = \frac{e^{it} - e^{-it}}{2i}.$$

Luego,

$$t \cot(t) = t \frac{\cos(t)}{\sen(t)} = \frac{it e^{it} + e^{-it}}{e^{it} - e^{-it}} = \frac{it e^{2it} + 1}{e^{2it} - 1} = -it + \frac{2it e^{2it}}{e^{2it} - 1}$$

$$= -it + \sum_{k \geq 0} \frac{B_k \cdot (2it)^k}{k!} = 1 + \sum_{k \geq 1} (-1)^k 2^{2k} \frac{B_{2k}}{(2k)!} t^{2k}.$$

■

Ejercicio (Euler). Demuestre la identidad

$$(2k + 1) B_{2k} = -\sum_{1 \leq \ell \leq k-1} \binom{2k}{2\ell} B_{2\ell} B_{2(k-\ell)} \quad \text{para } k \geq 2.$$

Por ejemplo, para $k = 3$ tenemos

$$-7 B_6 = \frac{6}{2} B_2 B_4 + \frac{6}{4} B_4 B_2.$$

Indicación: considere la función generatriz para los números pares $f(t) := \frac{te^t}{e^t-1} - \frac{t}{2} = \sum_{k \geq 0} \frac{B_{2k}}{(2k)!} t^{2k}$. Demuestre la identidad con la derivada formal $f(t) - tf(t)' = f(t)^2 - \frac{t^2}{4}$; sustituya $f(t)$ por $\sum_{k \geq 0} \frac{B_{2k}}{(2k)!} t^{2k}$ y compare los coeficientes de t^{2k}.

Ejercicio. Demuestre por inducción que $(-1)^{k+1} B_{2k} > 0$ para todo $k \geq 1$.

Indicación: use el ejercicio anterior.
Polinomios de Bernoulli

Hay varios modos de definir los polinomios de Bernoulli; el más común es por una función generatriz. Vamos a necesitar las series de potencias formales en dos variables:

$$\sum_{k,\ell \geq 0} a_{k,\ell} t^k x^\ell,$$

respecto a la suma término por término y multiplicación que extiende la multiplicación de polinomios en dos variables. Tenemos la serie formal

$$\frac{t}{e^t - 1} \in \mathbb{Q}[t] \subset \mathbb{Q}[[t, x]]$$

y podemos multiplicarla por la serie

$$e^{tx} := \sum_{k \geq 0} \frac{t^k}{k!} x^k \in \mathbb{Q}[[t, x]].$$

Un momento de reflexión demuestra que el resultado es de la forma

$$(1) \quad \frac{t e^{tx}}{e^t - 1} = \sum_{k \geq 0} B_k(x) \frac{t^k}{k!},$$

donde $B_k(x)$ son algunos polinomios en x.

Definición. El polinomio de Bernoulli $B_k(x)$ es el polinomio definido por (1).

Ejemplo. Vamos a ver un poco más adelante cómo calcular los polinomios $B_k(x)$; por el momento podemos obtener algunos de los primeros. Como hemos calculado arriba,

$$\frac{t}{e^t - 1} = 1 - t + \frac{t^2}{2} - \frac{t^3}{12} + \cdots.$$

Luego,

$$\frac{t}{e^t - 1} e^{tx} = \left(1 - t + \frac{t^2}{2} - \cdots \right) \left(1 + tx + \frac{t^2 x^2}{2} + \cdots \right) = 1 + \left(x - \frac{1}{2} \right) t + \left(\frac{x^2}{2} - \frac{x}{2} + \frac{1}{12} \right) t^2 + \cdots$$

de donde

$$B_0(x) = 1, \quad B_1(x) = x - \frac{1}{2}, \quad B_2(x) = x^2 - x + \frac{1}{6}.$$

▲

Observación. Para todo $k \geq 0$,

$$B_k(1) = B_k$$

es el k-ésimo número de Bernoulli.

Demostración. Comparando (1) con la función generatriz $\frac{t e^t}{e^t - 1} = \sum_{k \geq 0} B_k \frac{t^k}{k!}$.

Resulta que el término constante de $B_k(x)$ es también igual a B_k:

Observación. Para todo $k \geq 0$

$$B_k(x + 1) - B_k(x) = k x^{k-1}.$$

En particular, para $x = 0$ y $k \neq 1$ tenemos

$$B_k(1) = B_k(0) = B_k.$$
Demostración. Tenemos la identidad
\[
\frac{t e^{(x+1)} - t e^x}{e^t - 1} = t e^x,
\]
de donde
\[
\sum_{k \geq 0} \left(B_k(x + 1) - B_k(x) \right) \frac{t^k}{k!} = \sum_{k \geq 0} \frac{x^k}{k!} t^{k+1}.
\]
Comparando los coeficientes de \(t^k \), se obtiene (2).

Note que para \(k = 1 \) tenemos \(B_1(0) = -\frac{1}{2} \) y \(B_1(1) = +\frac{1}{2} \).

Observación. Para todo \(k \geq 0 \)
\[B_k(1 - x) = (-1)^k B_k(x). \]
(En particular, para \(x = 0 \) tenemos \(B_k = (-1)^k B_k \) para \(k \geq 3 \), lo que implica que \(B_k = 0 \) para \(k \geq 3 \) impar, como ya hemos visto.)

Demostración. Usando funciones generatrices,
\[
\sum_{k \geq 0} B_k(1 - x) \frac{t^k}{k!} = \frac{t e^{(1-x)} - t e^-t}{e^t - 1} = \sum_{k \geq 0} (-1)^k B_k(x) \frac{t^k}{k!}.
\]

Los polinomios de Bernoulli pueden ser expresados en términos de los números de Bernoulli:

Proposición.
\[B_k(x) = \sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} B_i x^{k-i}. \]

Demostración. Calculemos el producto de series de potencias
\[
\frac{t}{e^t - 1} \cdot e^x.
\]
Tenemos
\[
\frac{t}{e^t - 1} = \sum_{k \geq 0} (-1)^k B_k \frac{t^k}{k!} \quad e^x = \sum_{k \geq 0} \frac{(tx)^k}{k!}.
\]
Luego,
\[
\left(\sum_{k \geq 0} (-1)^k B_k \frac{t^k}{k!} \right) \cdot \left(\sum_{k \geq 0} \frac{(tx)^k}{k!} \right) = \sum_{k \geq 0} \left(\sum_{0 \leq i \leq k} (-1)^i \frac{1}{i!(k-i)!} B_i x^{k-i} \right) \frac{t^k}{k!} = \sum_{k \geq 0} \left(\sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} B_i x^{k-i} \right) \frac{t^k}{k!}.
\]

Proposición. Para todo \(k \geq 1 \) se tiene
\[B'_k(x) = k B_{k-1}(x), \quad \int_0^1 B_k(x) \, dx = 0. \]
Demostración. Hay varios modos de verificar esto. Se puede usar la expresión $B_k(x) = \sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} B_i x^{k-i}$.

También podemos tomar las derivadas formales de la identidad (??):

$$\frac{\partial}{\partial x} \left(\frac{t e^{tx}}{e^x - 1} \right) = t \cdot \frac{t e^{tx}}{e^x - 1} = t \sum_{k \geq 0} B_k(x) \frac{t^k}{k!} = \sum_{k \geq 1} B_{k-1}(x) \frac{t^k}{(k-1)!} = \sum_{k \geq 0} B'_k(x) \frac{t^k}{k!}.$$

Luego, para ver que $\int_0^1 B_k(x) \, dx = 0$, es suficiente observar que $\int B_k(x) \, dx = \frac{1}{k+1} B_{k+1}(x) + C$, donde $B_{k+1}(0) = B_{k+1}(1)$.

Esto nos da otra definición de los polinomios de Bernoulli:

Definición alternativa. Los polinomios $B_k(x)$ están definidos por

$$B_0(x) := 1$$

y

$$B'_k(x) = k B_{k-1}(x), \quad \int_0^1 B_k(x) \, dx = 0 \quad \text{para } k \geq 1.$$

(En efecto, la identidad $B'_k(x) = k B_{k-1}(x)$ define $B_k(x)$ salvo el término constante, pero el último se recupera de la condición $\int_0^1 B_k(x) \, dx = 0$.) Recordemos que los polinomios $S_k(x)$ que hemos estudiado en la primera lección satisfacen la identidad

$$S'_k(x) = k S_{k-1}(x) + B_k.$$

Esto significa que las derivadas $S'_k(x)$ satisfacen la misma identidad que $B_k(x)$:

$$S''_k(x) = k S'_{k-1}(x).$$

Además, para $k \neq 1$ tenemos $B_k(0) = S'_k(0) = : B_k$, y se ve que los polinomios de Bernoulli son simplemente las derivadas de los polinomios $S_k(x)$:

$$B_k(x) = S'_k(x), \quad \text{para } k \neq 1.$$

(El caso $k = 1$ es excepcional: $S_1(x) = \frac{1}{2} x^2 + \frac{1}{2} x, B_1(x) = x - \frac{1}{2}$.)
Ahora podemos compilar fácilmente una lista de los primeros polinomios de Bernoulli:

\[B_0(x) = 1, \]
\[B_1(x) = x - \frac{1}{2}, \]
\[B_2(x) = x^2 - x + \frac{1}{6}, \]
\[B_3(x) = x^3 - \frac{3}{2} x^2 + \frac{1}{2} x, \]
\[B_4(x) = x^4 - 2 x^3 + x^2 - \frac{1}{30}, \]
\[B_5(x) = x^5 - \frac{5}{2} x^4 + \frac{5}{3} x^3 - \frac{1}{6} x, \]
\[B_6(x) = x^6 - 3 x^5 + \frac{5}{2} x^4 - \frac{1}{2} x^2 + \frac{1}{42}, \]
\[B_7(x) = x^7 - \frac{7}{2} x^6 + \frac{7}{2} x^5 - \frac{7}{6} x^3 + \frac{1}{6} x, \]
\[B_8(x) = x^8 - 4 x^7 + \frac{14}{3} x^6 - \frac{7}{3} x^4 + \frac{2}{3} x^2 - \frac{1}{30}, \]
\[B_9(x) = x^9 - \frac{9}{2} x^8 + 6 x^7 - \frac{21}{5} x^5 + 2 x^3 - \frac{3}{10} x, \]
\[B_{10}(x) = x^{10} - 5 x^9 + \frac{15}{2} x^8 - 7 x^6 + 5 x^4 - \frac{3}{2} x^2 + \frac{5}{66}. \]

Podemos dibujar algunas gráficas para visualizar la relación \(B_k(1 - x) = (-1)^k B_k(x) \):
Para comprobar los resultados, podemos directamente calcular la serie $\frac{t^x}{e^t - 1}$:

? ser = t*exp(t*x) / (exp(t) - 1);
? polcoeff(ser,10,t)*10!
% = x^10 - 5*x^9 + 15/2*x^8 - 7*x^6 + 5*x^4 - 3/2*x^2 + 5/66

También podemos calcular las derivadas de $S_k(x)$:

? deriv (S(10),x)
% = x^10 + 5*x^9 + 15/2*x^8 - 7*x^6 + 5*x^4 - 3/2*x^2 + 5/66

En PARI/GP, la función predefinida bernpol(k) devuelve el polinomio de Bernoulli $B_k(x)$:

? bernpol(1)
% = x - 1/2
? bernpol(2)
% = x^2 - x + 1/6
? bernpol(3)
% = x^3 - 3/2*x^2 + 1/2*x

Derivando $B_{10}(x)$:

? deriv (Bpoly(10),x)
% = 10*x^9 - 45*x^8 + 60*x^7 - 42*x^5 + 20*x^3 - 3*x

Para probar la consistencia con PARI/GP:

? 10 * Bpoly(9)
% = 10*x^9 - 45*x^8 + 60*x^7 - 42*x^5 + 20*x^3 - 3*x