Weil-étale cohomology for $\mathbf{n}<0$

Alexey Beshenov
(CIMAT, Guanajuato)

November 29, 2019
First IMSA Conference
Centro de Colaboración Samuel Gitler / CINVESTAV

Arithmetic zeta-functions (Serre, 1965)

$$
\begin{aligned}
& X \\
& \downarrow_{\operatorname{Spec} \mathbb{Z}} \begin{array}{l}
\text { separated, } \\
\text { finite type }
\end{array} \\
& \hline
\end{aligned}
$$

$$
\zeta_{X}(s):=\prod_{\substack{x \in X \\ \text { closed }}} \frac{1}{1-\#\left(\mathcal{O}_{X, X} / \mathfrak{m}\right)^{-s}} . \quad(\operatorname{Re} s>\operatorname{dim} X)
$$

Conjecture: meromorphic continuation to $s \in \mathbb{C}$.

Extensively studied cases

- Riemann: $\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}=\zeta_{\text {spec } \mathbb{Z}}(s)$.
- Dedekind: $\zeta_{F}(s)=\zeta_{\text {Spec }} \mathcal{O}_{F}(s)$ for a number field F / \mathbb{Q}.
- Hasse-Weil: X / \mathbb{F}_{q}, then

$$
\zeta_{X}(s)=Z_{X}\left(q^{-s}\right),
$$

where

$$
Z_{X}(t)=\exp \left(\sum_{m \geq 1} \frac{\# X\left(\mathbb{F}_{q^{m}}\right)}{m} t^{m}\right) \stackrel{\text { Dwork }}{\in} \mathbb{Q}(t)
$$

(Cf. Weil conjectures.)

Special values

- $\operatorname{Fix} n \in \mathbb{Z}$.
- $d_{n}:=$ vanishing order of $\zeta_{X}(s)$ at $s=n$.
- Special value (leading Taylor coefficient) at $s=n$:

$$
\zeta_{X}^{*}(n):=\lim _{s \rightarrow n}(s-n)^{-d_{n}} \zeta_{X}(s)
$$

Classical motivation: class number formula

- Let $X=\operatorname{Spec} \mathcal{O}_{F}$ and $n=0$.
- Zero of order $d_{0}=r_{1}+r_{2}-1$, where $r_{1}:=\#$ real places, $2 r_{2}:=\#$ complex places.
- Special value $\zeta_{F}^{*}(0)=-\frac{\# H^{1}\left(\operatorname{Spec} \mathcal{O}_{F}, \mathbb{G}_{m}\right)}{\# H^{0}\left(\operatorname{Spec} \mathcal{O}_{F}, \mathbb{G}_{m}\right)_{\text {tors }}} R_{F}$, $R_{F}:=$ Dirichlet regulator $\in \mathbb{R}$.
- Formulas for other $n \in \mathbb{Z}$?

Weil-étale cohomology (Lichtenbaum, 2000s)

Conjectural cohomology theory.

- Groups $H_{W, c}^{i}(X, \mathbb{Z}(n))=H^{i}\left(R \Gamma_{W, c}(X, \mathbb{Z}(n))\right)$.
- Perfectness: finitely generated and $=0$ for $|i| \gg 0$.
- Long exact sequence

$$
\cdots \rightarrow H_{W, c}^{i}(X, \mathbb{Z}(n)) \otimes \mathbb{R} \rightarrow H_{W, c}^{i+1}(X, \mathbb{Z}(n)) \otimes \mathbb{R} \rightarrow \cdots
$$

- Knudsen-Mumford determinants \Longrightarrow canonical isomorphism

$$
\lambda: \mathbb{R} \cong(\underbrace{\operatorname{det}_{\mathbb{Z}} R \Gamma_{W, c}(X, \mathbb{Z}(n))}_{\text {free } \mathbb{Z} \text {-mod of rk } 1}) \otimes \mathbb{R} .
$$

$-d_{n} \stackrel{? ? ?}{=} \sum_{i}(-1)^{i} \cdot i \cdot \mathrm{rk}_{\mathbb{Z}} H_{W, c}^{i}(X, \mathbb{Z}(n))$.

- $\lambda\left(\zeta_{X}^{*}(n)^{-1}\right) \cdot \mathbb{Z} \stackrel{? ? ?}{=} \operatorname{det}_{\mathbb{Z}} R \Gamma_{W, c}(X, \mathbb{Z}(n))$.

Some work on Weil-étale cohomology

Lichtenbaum, 2005: $\quad X / \mathbb{F}_{q}$ smooth

+ work by Geisser

Lichtenbaum, 2009: $\quad X=\operatorname{Spec} \mathcal{O}_{F}$
Morin, 2014: $\quad X / \mathbb{Z}$ proper, regular, $\quad n=0$
Flach, Morin, 2018: $\quad X / \mathbb{Z}$ proper, regular, $\quad n \in \mathbb{Z}$
-, 2018:
X / \mathbb{Z} any...
$n<0$

From now on fix $\mathbf{n}<0$

- Geisser, 2010: dualizing cycle complexes $\mathbb{Z}^{c}(n)$. Complexes of abelian sheaves on $X_{e ́ t}$.
- A variation of Bloch's cycle complexes (1986).
- Motivation: arithmetic duality theorems.
- Behaves as Borel-Moore homology: for $Z \rightarrow X \leftarrow U$

$$
R \Gamma\left(Z_{e ́ t}, \mathbb{Z}^{c}(n)\right) \rightarrow R \Gamma\left(X_{e ́ t}, \mathbb{Z}^{c}(n)\right) \rightarrow R \Gamma\left(U_{e ́ t}, \mathbb{Z}^{c}(n)\right) \rightarrow[+1]
$$

- Calculations: few and hard...
- Conjecture (Lichtenbaum): $H^{i}\left(X_{e ́ t}, \mathbb{Z}^{c}(n)\right)$ are finitely generated.

Weil-étale complexes (after Flach and Morin)

- Assuming Lichtenbaum's conjecture, there exists a perfect complex $R \Gamma_{w, c}(X, \mathbb{Z}(n))$.
- Splitting over \mathbb{R} :

$$
R \Gamma_{W, c}(X, \mathbb{Z}(n)) \otimes \mathbb{R} \cong\left(\begin{array}{c}
R \operatorname{Hom}\left(R \Gamma\left(X_{e ́ t}, \mathbb{Z}^{c}(n)\right), \mathbb{R}\right)[-1] \\
\oplus \\
R \Gamma_{c}\left(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)\right)[-1]
\end{array}\right)
$$

$\mathbb{R}(n):=(2 \pi i)^{n} \mathbb{R}$, as a $G_{\mathbb{R}}=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$-equivariant sheaf.

- Long exact sequence of $H_{W, c}^{i}(X, \mathbb{Z}(n)) \otimes \mathbb{R}$: need a regulator.

Regulator morphism

- Kerr-Lewis-Müller-Stach (2006) \Longrightarrow for $X_{\mathbb{C}}$ is smooth and quasi-projective:

$$
R e g: R \Gamma\left(X_{e ́ t}, \mathbb{Z}^{c}(n)\right) \rightarrow R \Gamma_{B M}\left(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)\right)[1] .
$$

- Note: as always, $n<0$, this is why the RHS is simple.
- Conjecture (Beilinson): the dual

$$
\operatorname{Reg}^{\vee}: R \Gamma_{c}\left(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)\right)[-1] \rightarrow R \operatorname{Hom}\left(R \Gamma\left(X_{e ́ t}, \mathbb{Z}^{c}(n)\right), \mathbb{R}\right)
$$

is a quasi-isomorphism.

- Splitting over $\mathbb{R}+$ Beilinson's conjecture \Longrightarrow l.e.s.

$$
\cdots \rightarrow H_{W, c}^{i}(X, \mathbb{Z}(n)) \otimes \mathbb{R} \rightarrow H_{W, c}^{i+1}(X, \mathbb{Z}(n)) \otimes \mathbb{R} \rightarrow \cdots
$$

- Assume...
meromorphic continuation of $\zeta_{X}(s)$ around $s=n<0$, $X_{\mathbb{C}}$ is smooth quasi-projective,
Lichtenbaum's and Beilinson's conjectures.
- Then

$$
\begin{aligned}
d_{n} & =\sum_{i}(-1)^{i} \cdot i \cdot \mathrm{rk}_{\mathbb{Z}} H_{W, c}^{i}(X, \mathbb{Z}(n)), \\
\lambda\left(\zeta_{X}^{*}(n)^{-1}\right) \cdot \mathbb{Z} & =\operatorname{det}_{\mathbb{Z}} R \Gamma_{W, c}(X, \mathbb{Z}(n)) .
\end{aligned}
$$

- Note: this would imply

$$
d_{n}=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{R}} H_{c}^{i}\left(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)\right)
$$

What it's good for?

- If X is proper and regular, then $\mathbf{C}(X, n)$ is equivalent to the conjecture of Flach and Morin.
- (Whenever makes sense) compatible with the Tamagawa number conjecture (Bloch-Kato-Fontaine-Perrin-Riou).
- Well-behaved under decompositions: for $Z \rightarrow X \leftarrow U$ holds $\zeta_{X}(s)=\zeta_{z}(s) \cdot \zeta_{u}(s)$ (obviously), and in fact

$$
\mathbf{C}(X, n) \Longleftrightarrow \mathbf{C}(Z, n)+\mathbf{C}(U, n)
$$

* Construction (after Flach and Morin)

Consider the étale sheaf $\mathbb{Z}(n):=\bigoplus_{p} \lim _{r} j_{p}!\mu_{p^{\prime}}^{\otimes n}[-1]$, where $j_{p}: X[1 / p] \hookrightarrow X$.

Some questions

- A regulator for non-smooth $X_{\mathbb{C}}$?
- A less ad-hoc definition of Weil-étale complexes? Morally, there should be a Grothendieck topology behind everything.

Thank you!

