Weil-étale cohomology for n < 0

Alexey Beshenov (CIMAT, Guanajuato)

November 29, 2019

First IMSA Conference Centro de Colaboración Samuel Gitler / CINVESTAV

Arithmetic zeta-functions (Serre, 1965)

 $\begin{array}{c} X \\ \downarrow \text{ separated,} \\ \downarrow \text{ finite type} \\ \text{Spec } \mathbb{Z} \end{array}$

$$\zeta_X(s) := \prod_{\substack{X \in X \\ \text{closed}}} \frac{1}{1 - \#(\mathcal{O}_{X,X}/\mathfrak{m})^{-s}}. \quad (\text{Re } s > \dim X)$$

Conjecture: meromorphic continuation to $s \in \mathbb{C}$.

Extensively studied cases

- Riemann: $\zeta(s) = \prod_{p \text{ } \frac{1}{1-p^{-s}}} = \zeta_{\text{Spec } \mathbb{Z}}(s).$
- **Dedekind**: $\zeta_F(s) = \zeta_{\text{Spec } \mathcal{O}_F}(s)$ for a number field F/\mathbb{Q} .
- ► Hasse-Weil: X/\mathbb{F}_q , then

$$\zeta_X(s)=Z_X(q^{-s}),$$

where

$$Z_X(t) = \exp\left(\sum_{m\geq 1} rac{\#X(\mathbb{F}_{q^m})}{m} t^m
ight) \stackrel{\mathsf{Dwork}}{\in} \mathbb{Q}(t).$$

(Cf. Weil conjectures.)

- ▶ Fix $n \in \mathbb{Z}$.
- $d_n :=$ vanishing order of $\zeta_X(s)$ at s = n.
- ► **Special value** (leading Taylor coefficient) at *s* = *n*:

$$\zeta_X^*(n) := \lim_{s \to n} (s-n)^{-d_n} \zeta_X(s).$$

Classical motivation: class number formula

• Let
$$X = \operatorname{Spec} \mathcal{O}_F$$
 and $n = 0$.

► Zero of order $d_0 = r_1 + r_2 - 1$, where $r_1 := \#$ real places, $2r_2 := \#$ complex places.

. . . 1 . -

► Special value
$$\zeta_F^*(0) = -\frac{\#H^1(\text{Spec }\mathcal{O}_F, \mathbb{G}_m)}{\#H^0(\text{Spec }\mathcal{O}_F, \mathbb{G}_m)_{tors}}R_F,$$

 $R_F := \text{Dirichlet regulator} \in \mathbb{R}.$

Formulas for other $n \in \mathbb{Z}$?

Weil-étale cohomology (Lichtenbaum, 2000s)

Conjectural cohomology theory.

- Groups $H^{i}_{W,c}(X,\mathbb{Z}(n)) = H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n))).$
- Perfectness: finitely generated and = 0 for $|i| \gg 0$.
- Long exact sequence

$$\cdots \to H^{i}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to \cdots$$

► Knudsen-Mumford determinants ⇒ canonical isomorphism

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\text{free }\mathbb{Z}\text{-mod of rk }1}) \otimes \mathbb{R}.$$

Lichtenbaum, 2005: X/\mathbb{F}_q smooth + work by **Geisser**

Lichtenbaum, 2009: $X = \operatorname{Spec} \mathcal{O}_F$

Morin, 2014: X/\mathbb{Z} proper, regular, n = 0

Flach, Morin, 2018: X/\mathbb{Z} proper, regular, $n \in \mathbb{Z}$

–, 2018: X/\mathbb{Z} any... n < 0

From now on fix n < 0

Motivic cohomology $H^{\bullet}(X_{\acute{e}t}, \mathbb{Z}^{c}(n))$

- ► Geisser, 2010: dualizing cycle complexes Z^c(n). Complexes of abelian sheaves on X_{ét}.
- ► A variation of **Bloch's cycle complexes** (1986).
- Motivation: arithmetic duality theorems.
- Behaves as **Borel–Moore homology**: for $Z \rightarrow X \leftarrow U$

 $R\Gamma(Z_{\acute{e}t},\mathbb{Z}^{c}(n)) \to R\Gamma(X_{\acute{e}t},\mathbb{Z}^{c}(n)) \to R\Gamma(U_{\acute{e}t},\mathbb{Z}^{c}(n)) \to [+1]$

- Calculations: few and hard...
- **Conjecture** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ are finitely generated.

Weil-étale complexes (after Flach and Morin)

- ► Assuming Lichtenbaum's conjecture, there exists a perfect complex RF_{W,c}(X, Z(n)).
- ► Splitting over ℝ:

$$R\Gamma_{W,c}(X,\mathbb{Z}(n))\otimes\mathbb{R}\cong\left(\begin{array}{c}R\mathrm{Hom}(R\Gamma(X_{\acute{e}t},\mathbb{Z}^{c}(n)),\mathbb{R})[-1]\\\oplus\\R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),\mathbb{R}(n))[-1]\end{array}\right),$$

 $\mathbb{R}(n) := (2\pi i)^n \mathbb{R}$, as a $G_{\mathbb{R}} = \mathsf{Gal}(\mathbb{C}/\mathbb{R})$ -equivariant sheaf.

► Long exact sequence of $H^{i}_{W,c}(X, \mathbb{Z}(n)) \otimes \mathbb{R}$: need a **regulator**.

► Kerr-Lewis-Müller-Stach (2006) ⇒ for X_C is smooth and quasi-projective:

 $Reg: R\Gamma(X_{\acute{e}t}, \mathbb{Z}^{c}(n)) \to R\Gamma_{BM}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))[1].$

- Note: as always, n < 0, this is why the RHS is simple.
- Conjecture (Beilinson): the dual

 $Reg^{\vee} \colon R\Gamma_c(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))[-1] \to R\operatorname{Hom}(R\Gamma(X_{\acute{e}t}, \mathbb{Z}^c(n)), \mathbb{R})$

is a quasi-isomorphism.

• Splitting over \mathbb{R} + Beilinson's conjecture \Longrightarrow l.e.s.

 $\cdots \rightarrow H^{i}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \rightarrow H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \rightarrow \cdots$

Assume...

meromorphic continuation of $\zeta_X(s)$ around s = n < 0, $X_{\mathbb{C}}$ is smooth quasi-projective, Lichtenbaum's and Beilinson's conjectures.

Then

$$d_n = \sum_i (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X, \mathbb{Z}(n)),$$
$$\lambda(\zeta^*_X(n)^{-1}) \cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X, \mathbb{Z}(n)).$$

► Note: this would imply $d_n = \sum_i (-1)^i \dim_{\mathbb{R}} H^i_c(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)).$

- ► If *X* is proper and regular, then **C**(*X*, *n*) is equivalent to the conjecture of Flach and Morin.
- (Whenever makes sense) compatible with the Tamagawa number conjecture (Bloch-Kato-Fontaine-Perrin-Riou).
- ► Well-behaved under decompositions: for $Z \rightarrow X \leftarrow U$ holds $\zeta_X(s) = \zeta_Z(s) \cdot \zeta_U(s)$ (obviously), and in fact

$$\mathbf{C}(X,n) \iff \mathbf{C}(Z,n) + \mathbf{C}(U,n).$$

* Construction (after Flach and Morin)

Consider the étale sheaf $\mathbb{Z}(n) := \bigoplus_{\rho} \varinjlim_{r} j_{\rho!} \mu_{\rho'}^{\otimes n}[-1]$, where $j_{\rho} \colon X[1/\rho] \hookrightarrow X$.

- ► A regulator for non-smooth $X_{\mathbb{C}}$?
- A less ad-hoc definition of Weil-étale complexes? Morally, there should be a Grothendieck topology behind everything.

Thank you!